
[Pick the date]

University of Lahore | Designed by Zahid muneer

CMP1O113 INTRODUCTION TO COMPUTING

1

2

LAB MANUAL : 2

Introduction to Computing

Lab Session 9: Introduction to Dev. C++, Basic Structure & I/O Commands 3

Lab Session 10: Basics of C++ (data types & escape sequences) 14

Lab Session 11: Operators in C++ .. 17

Lab Session 12: C++ Decision Making Statement 23

Lab Session 13:C++ Loops Types .. 29

Lab Session: 14 Array In C++ .. 33

3

Lab Session 9: Introduction to Dev. C++, Basic Structure & I/O Commands
Objective: Introduction to C++ Compilerand Installation of Dev C++. And to get acknowledged

about the basic C++ Program structure and basic commands for input and output.

C++ Compiler:

A C++ compiler is itself a computer program that‟s only job is to convert the C++ program from

our form to a form the computer can read and execute. The original C++ program is called

the “source code”, and the resulting compiled code produced by the compiler is usually called

an “object file”. Before compilation the preprocessor performs preliminary operations on C++

source files. Preprocessed form of the source code is sent to compiler. After compilation stage

object files are combined with predefined libraries by a linker, to produce the final complete file

that can be executed by the computer. A library is a collection of pre-compiled “object code” that

provides operations that are done repeatedly by many computer programs.

Installation steps of Dev C++ compiler:

Step 1:Download the setup and Unzip the folder. Click on the folder Dev C++

4

After you open the folder, you will find the following files. Double click devcpp.exe file

Step 2:When You Double Click .exe file the following window appears. Select English language

and press „Next‟.

Step 3:

A window appears asking the user

about creating a cache.

5

Step 4:

Select „Yes‟ and Press „Next‟. The setup will proceed as follows

After the process is completed the following Window appears, that confirms the successful

configuration of Dev C++. Click „OK

6

Starting Dev C++:

Starting with Dev C++ results in

opening of following Window.

Click on „Close‟ button. You will

come up with IDE of Dev C++

Project Creation:

Step 1:

To create a new Project

File<New<Project

Step 2:

Following Window appears,

asking about the Windows

Application , Console Application

…..

 Select Console Application

7

 Write the name of Project

 Select the „C++ Project‟ radio button

Press OK

Step 3:

Directory opens that enable the user to select the path of the project by browsing the directory.

After Selecting the path select „Save‟

Step 4:

The following „main.cpp‟ file will open.

8

Compilation and Debugging of Project:

Step1:Now the project

is compiled

Execute<Compile

Following Window

will open that enables

the user to see number

of „Errors‟ and

„Warnings‟

After the Compilation is

done Status „Linking‟ is

replaced by „Done‟

9

Step 2:

Now the project is Debugged

Debug<Debug Output will appear on „Console‟

10

Structure of C++ Program:

A C++ program starts with function called main (). The body of the function is enclosed
between curly braces. The program statements are written within the braces. Each statement
must end by a semicolon ; (statement terminator).

A C++ program may contain as many functions as required. However, when the program is
loaded in the memory, the control is handed over to function main () and it is the first function
to be executed.

#include<header file>

int main()

{

...........

}

// This is my first program is C++

/* this program will illustrate different components of

a simple program in C++ */

include<iostream>

Using namespacestd;

intmain ()

{

 …………….

 …………….

 return 0; // My first program in C++

}

Various components of this program are discussed below:

Comments:

The line of the above program with „//‟ are comments and are ignored by the compiler.

Comments are included in a program to make it more readable. If a comment is short and can be

accommodated in a single line, then it is started with double slash sequence in the first line of the

program. However, if there are multiple lines in a comment, it is enclosed between the two

symbols /* and */.

11

#include <iostream>

The line in the above program that start with # symbol are called directives and are instructions

to the compiler. The word include with '#' tells the compiler to include the file iostream into the

file of the above program. File iostream is a header file needed for input/ output requirements

of the program. Therefore, this file has been included at the top of the program.

int main ()

The word main is a function name. The brackets () with main tells that main () is a function.

The word int before main () indicates that integer value is being returned by the function main

(). When program is loaded in the memory, the control is handed over to function main () and it

is the first function to be executed.

Curly bracket and body of the function main ()

A C++ program starts with function called main (). The body of the function is enclosed between

curly braces. The program statements are written within the brackets. Each statement must end

by a semicolon, without which an error message in generated.

return 0;

This is a new type of statement, called a return statement. When a program finishes running, it

sends a value to the operating system. This particular return statement returns the value of 0 to

the operating system, which means “everything went okay!”

Input Output Commands in C++ :

C++ supports input/output statements which can be used to feed new data into the computer or

obtain output on an output device such as: VDU, printer etc. The following C++ stream objects

can be used for the input/output purpose.

1. cin console input

2. cout console output

cout is used in conjunction with << operator, known as insertion or put to operator.

cin is used in conjunction with >>operator, known as extraction or get from operator.

cout<< “My first computer";Once this statement is carried out by the computer, the message

"My first computer" will appear on the screen.

12

Examples:

cout <<"Output sentence"; // prints Output sentence on screen

cout << 120; // prints number 120 on screen

cout << x; // prints the value of x on screen

int num;

cin>> num;

cin can be used to input a value entered by the user from the keyboard. However, the get from

operator>> is also required to get the typed value from cin and store it in the memory location.

In the above segment, the user has defined a variable‟ num‟ of integer type in the first statement

and in the second statement he is trying to read a value from the keyboard.

Sample Example:

/* this program illustrates how to

declare variable, read data and display data. */

#include <iostream>

usingnamespacestd;

int main ()

{

 int rollno;//declare the variable rollno of type int

 float marks;//declare the variable marks of type float

 cout<<"Enter roll number and marks :";

 cin>>rollno>> marks; //store data into variable rollno & marks

 cout<<"Rollno: "<<rollno<<"\n";

 cout<<"Marks: "<< marks;

 return0;

}

Sample Run: In this sample run, the user input is shaded.

Enter roll number and marks: 102 87.5

Rollno: 102

Marks: 87.5

13

Lab Tasks:

1. Take a simple C++ Program and Compile it by removing the elements required in basic

Syntax. And write your observations.

2. Look for more Header files in C++ (at least five) and write their functions

3. Write a program to print the following text:
Hello in my university (empty line)

I am a student in it faculty (empty line)

Welcome.
4. Find and correct the errors in the following code.

#include <iostream>
 int main()

{
cout<< "we are happy"

}

5. Find the errors in the following code.
 #include <iostream>
using namespace std;
int main

{

cout>> "c++ first exam/n";

cout<<"\n END\t PROGRAM\t BYE;

}

6. Input 3 numbers from user and print their sum and product and average.

14

Lab Session 10: Basics of C++ (data types & escape sequences)

Objective: To understand about data types and escape sequences.

Data Types:

C++ supports a large number of data types. The built in or basic data types supported by C++ are

integer, floating point and character. These are summarized in table along with description and

memory requirement.

Type Byte Range Description

int 2 -32768 to +32767 Small whole number

long int 4 -2147483648 to +2147483647 Large whole number

float 4 3.4x10-38 to 3.4x10+38 Small real number

double 8 1.7x10-308 to 1.7x10+308 Large real number

long double 10 3.4x10-4932 to 3.4x10+4932 Very Large real number

char 1 0 to 255 A Single Character

Variables:

It is a location in the computer memory which can store data and is given a symbolic name for

easy reference. The variables can be used to hold different values at different times during the

execution of a program.

To understand more clearly we should study the following statements:

Total = 20.00; in this statement a value 20.00 has been stored in a memory location Total.

Declaration of a variable
Before a variable is used in a program, we must declare it. This activity enables the compiler to

make available the appropriate type of location in the memory.

float Total;

15

You can declare more than one variable of same type in a single statement

int x,y;

Initialization of variable
When we declare a variable its default value is undetermined. We can declare a variable with

some initial value.

int a = 20;

Escape Sequences:

Escape sequences are character combinations starting with a backslash (\) and followed by a

letter or digits inserted in a string literal to produce a modified output. For example, to produce a

newline when outputting a string, we can use the \n escape sequence.

The following table shows a list of escape sequences and their corresponding effect:

Lab Tasks:

1. Practice all the Escape sequences in your program and observe the results

2. Write a simple C++ Program that Display your name, Father Name (in a new line) and

end with a beep.

3. Display the message "This is a C program." with the words separated by tabs.

Expected output

This is my first program

This is a C program

This is a c

Program

This

Is

a

c

program

This is a c program

Escape Sequence Output

\a Bell (beep)

\n Newline

\r Carriage Return

\t Horizontal tab

\0 Null Character

\b Backspace

16

4. Write a program that will show the following output Using cout Statement

**

** INTRODUCTION TO COMPUTING **

** Language C++ **

** DEV C++ **

**

5. Write a C++ program which takes two numbers input from the user and print their sum,

difference, product, modulus and division results.

6. Write a program that will return the size of each data types .

17

Lab Session 11: Operators in C++
Objective: To understand about the concept of operators in C++ and their use.

Operators in C++:

Operators are special symbols used for specific purposes. C++ provides six types of operators.

1. Assignment operators

2. Arithmetical operators

3. Compound operators

4. Increment Decrement operator

5. Relational operators

6. Logical operators

7. Conditional operators

8. Comma operator

1. Assignment (=) operator

The assignment operator assigns a value to a variable.

 a = 5;

This statement assigns the integer value 5 to the variable a.

For example, let us have a look at the

following code - I have included the

evolution of the content stored in the

variables as comments:

This code will give us as result that the value

contained in a is 4 and the one contained

in b is 7.

// assignment operator

#include <iostream>

usingnamespace std;

int main ()

{

int a, b; // a:?, b:?

a = 10; // a:10, b:?

b = 4; // a:10, b:4

a = b; // a:4, b:4

b = 7; // a:4, b:7

cout<<"a:";
cout<< a;
cout<<" b:";
cout<< b;

return 0;

}

The following expression is also valid in C++:

 a = b = c = 5;

It assigns 5 to the all three variables: a, b and c.

18

2. Arithmetic operator

The five arithmetical operations supported by the C++ language are:

Operator Meaning

+ Addition

_ Subtraction

* Multiplication

/ Division

% For remainder or

modulus

Operations of addition, subtraction, multiplication and division literally correspond with their

respective mathematical operators. The only one that you might not be so used to see is modulo;

whose operator is the percentage sign (%). Modulo is the operation that gives the remainder of a

division of two values. For example, if we write:

 a = 11 % 3;

The variable „a‟ will contain the value 2, since 2 is the remainder from dividing 11 between 3.

 The precedence of the arithmetic operation in C++ is as the following :

3. Compound operators (+=, -=, *=, /=, %=, >>=, <<=, &=, ^=, |=)

When we want to modify the value of a variable by performing an operation on the value

currently stored in that variable we can use compound assignment operators:

For example:
// compound assignment operators
#include <iostream>
usingnamespacestd;
int main ()
{
int a, b=3;
 a = b;
 a+=2; // equivalent to a=a+2
cout<< a;
return 0;
}

19

Expression Is Equivalent To

value += increase; value = value + increase;

a -= 5; a = a - 5;

a /= b; a = a / b;

price *= units + 1; price = price * (units + 1);

4. Increase and Decrease (++, --)
Shortening even more some expressions, the increase operator (++) and the decrease operator (--

). Increase or decrease by one the value stored in a variable. They are equivalent to +=1 and to -

=1, respectively. Thus:

c++;
c+=1;

c=c+1;are all equivalent in its functionality: the three of them increase by one the value of c.

• The position of the ++ determines when the value is incremented.

• The position of the -- determines when the value is decremented.

Notice the difference:

Example 1 Example 2

B=3;

A=++B;

// A contains 4, B contains 4

A=--B;

// A contains 2, B contains 2

B=3;

A=B++;

// A contains 3, B contains 4

A=B--;

// A contains 3, B contains 2

In Example 1, B is increased or decreased before its value is copied to A. While in Example 2,

the value of B is copied to A and then B is increased or decreased.

5. Relational and equality operators (==, !=, >, <, >=, <=)

In order to evaluate a comparison between two expressions we can use the relational and equality

operators. The result of a relational operation is a Boolean value that can only be true or false,

according to its Boolean result.

We may want to compare two expressions, for example, to know if they are equal or if one is

greater than the other is. Here is a list of the relational and equality operators that can be used in

C++:
Operator Meaning

== Checks if the values of two operands are equal or not, if yes then condition

becomes true.

!= Checks if the values of two operands are equal or not, if values are not equal then

condition becomes true.

> Checks if the value of left operand is greater than the value of right operand, if

yes then condition becomes true.

20

< Checks if the value of left operand is less than the value of right operand, if yes

then condition becomes true.

>= Checks if the value of left operand is greater than or equal to the value of right

operand, if yes then condition becomes true.

<= Checks if the value of left operand is less than or equal to the value of right

operand, if yes then condition becomes true.

Here there are some examples:
(7 == 5) // evaluates to false.
(5 > 4) // evaluates to true.
(3 != 2) // evaluates to true.
(6 >= 6) // evaluates to true.
(5 < 5) // evaluates to false.

Of course, instead of using only numeric constants, we can use any valid expression, including

variables.
Suppose that a=2, b=3 and c=6,
(a == 5) // evaluates to false since a is not equal to 5.
(a*b >= c) // evaluates to true since (2*3 >= 6) is true.
(b+4 > a*c) // evaluates to false since (3+4 > 2*6) is false.

((b=2) == a) // evaluates to true.

Be careful! The operator = (one equal sign) is not the same as the operator == (two equal signs),

the first one is an assignment operator (assigns the value at its right to the variable at its left) and

the other one (==) is the equality operator that compares whether both expressions in the two

sides of it are equal to each other. Thus, in the last expression ((b=2) == a), we first assigned the

value 2 to b and then we compared it to a, that also stores the value2, so the result of the

operation is true.

6. Logical operators (!, &&, ||)

Examples:
!(5 == 5) // evaluates to false because the expression at its right (5 == 5) is true.
!(6 <= 4) // evaluates to true because (6 <= 4) would be false.
!true// evaluates to false
!false// evaluates to true.

((5 == 5) && (3 > 6)) // evaluates to false (true&& false).
((5 == 5) || (3 > 6)) // evaluates to true (true || false

Operator Meaning

&& Called Logical AND operator. If both the operands are non-zero, then condition

becomes true.

|| Called Logical OR Operator. If any of the two operands is non-zero, then

condition becomes true

! Called Logical NOT Operator. Use to reverses the logical state of its operand. If a

condition is true then Logical NOT operator will make false.

When using the logical operators, C++ only evaluates what is necessary from left to right to

come up with the combined relational result, ignoring the rest. Therefore, in this last example

21

((5==5)||(3>6)), C++ would evaluate first whether 5==5 is true, and if so, it would never check

whether 3>6 is true or not. This is known as short-circuit evaluation, and works like this for these

operators:

operator short-circuit

&& if the left-hand side expression is false, the combined result is false (right-hand side

expression not evaluated).

|| if the left-hand side expression is true, the combined result is true (right-hand side expression

not evaluated).

7. Conditional operator (?)

The conditional operator evaluates an expression returning a value if that expression is true and a

different one if the expression is evaluated as false. Its format is:

condition? result1: result2

if condition is true the expression will return result1, if it is not it will return result2.
7==5 ?4 : 3 // returns 3, since 7 is not equal to 5.
7==5+2 ?4 : 3 // returns 4, since 7 is equal to 5+2.
5>3 ?a : b // returns the value of a, since 5 is greater than 3.
a>b ? a : b // returns whichever is greater, a or b.

// conditional operator
#include <iostream>
usingnamespacestd;
int main ()
{
Int a,b,c;
 a=2;
 b=7;
 c = (a>b) ? a : b;
cout<< c;
return 0;
}

In this example a was 2 and b was 7, so the expression being evaluated (a>b) was not true, thus

the first value specified after the question mark was discarded in favor of the second value (the

one after the colon) which was b, with a value of 7.

8. Comma operator (,)

The comma operator (,) is used to separate two or more expressions that are included where only

one expression is expected. When the set of expressions has to be evaluated for a value, only the

rightmost expression is considered.

For example, the following code:

 a = (b=3, b+2);

Would first assign the value 3 to b, and then assign b+2 to variable a. So, at the end, variable a

would contain the value 5 while variable b would contain value 3.

22

Lab Tasks:

1. Show the value of x after each statement is performed. Write program to check your answers.

Here x is an integer.

a. x = 7 + 3 * 6 / 2 - 1;

b. x = 2 % 2 + 2 * 2- 2 / 2;

c. x = (3 * 9 * (3 + (9 * 3 / (3))));

d. x = 2 * 3 / 4 + 4 / 4 + 8 - 2 + 5 / 8;

e. x = 3 / 2 * 4 + 3 / 8 + 3;

2. Write a program to find the number of bytes occupied by various data types using the sizeof

operator?

a. int a;

b. char b;

c. float c;

d. long int d;

e. bool e;

f. unsigned int j;

g. unsigned long k;

Hint: cout<< “size of integer variable” << sizeof(a)<< endl;

23

Lab Session 12: C++ Decision Making Statement

The if, if...else and nested if...else statement are used to make one-time decisions in C++

Programming, that is, to execute some code/s and ignore some code/s depending upon the test

condition. Without decision making, the program runs in similar way every time. Decision

making is an important feature of every programming language using C++ programming.

C++ if...else statement

An if statement can be followed by an optional else statement, which executes when the boolean

expression is false.

Syntax:

The syntax of an if...else statement in C++ is:

if(boolean_expression)

{

 // statement(s) will execute if the boolean expression is true

}

else

{

 // statement(s) will execute if the boolean expression is false

}

If the boolean expression evaluates to true, then the if block of code will be executed, otherwise else

block of code will be executed.

 Flow Diagram

24

Example:

#include <iostream>

using namespace std;

int main ()

{

 int a = 100;

 if(a < 20)

 {

 cout << "a is less than 20;" << endl;

 }

 else

 {

 cout << "a is not less than 20;" << endl;

 }

 cout << "value of a is : " << a << endl;

 system("pause");

 return 0;

}

When the above code is compiled and executed, it produces the following

a is not less than 20;

value of a is : 100

The if...else if...else Statement:

An if statement can be followed by an optional else if...else statement, which is very usefull to test various

conditions using single if...else if statement.

When using if , else if , else statements there are few points to keep in mind.

 An if can have zero or one else's and it must come after any else if's.

 An if can have zero to many else if's and they must come before the else.

 Once an else if succeeds, none of he remaining else if's or else's will be tested.

25

Syntax:

if(boolean_expression 1)

{

 // Executes when the boolean expression 1 is true

}

else if(boolean_expression 2)

{

 // Executes when the boolean expression 2 is true

}

else if(boolean_expression 3)

{

 // Executes when the boolean expression 3 is true

}

else

{

 // executes when the none of the above condition is true.

}

Class Exercise:

1.Write a Program to check whether the integer entered by user is positive, negative or

zero.

2.Write a program that will define the grade of student according to the numbers that the

student gain in his examination where the grade system is define as following

 a)A+ when the marks are 90 or above b)A when the marks are 80 or above

c)B when the marks are 70 or above d)C when the marks are 60 or above

e)D when the marks are 50 or above f)E when the marks are 40 or above

g)F otherwise

26

C++ Loop Types

There may be a situation, when you need to execute a block of code several number of times. In

general statements are executed sequentially: The first statement in a function is executed first,

followed by the second, and so on. Programming languages provide various control structures that

allow for more complicated execution paths. A loop statement allows us to execute a statement or group

of statements multiple times and following is the general from of a loop statement in most of the

programming languages:

C++ programming language provides the following types of loop to handle looping requirements.

Loop Type Description

While loop Repeats a statement or group of statements while a given

condition is true. It tests the condition before executing the

loop body.

For loop Execute a sequence of statements multiple times and

abbreviates the code that manages the loop variable.

DO....While loop Like a while statement, except that it tests the condition at the

end of the loop body

Nested loops You can use one or more loop inside any another while, for or

do..while loop.

27

While Loop

A while loop statement repeatedly executes a target statement as long as a given condition is true.

Syntax:

The syntax of a while loop in C++ is:

while(condition)

{

 statement(s);

}

Here, statement(s) may be a single statement or a block of statements. Thecondition may be any

expression, and true is any non-zero value. The loop iterates while the condition is true. When the

condition becomes false, program control passes to the line immediately following the loop.

Flow Diagram:

Here, key point of the while loop is that the loop might not ever run. When the condition is tested and the

result is false, the loop body will be skipped and the first statement after the while loop will be executed.

28

Example:

#include <iostream>

using namespace std;

int main ()

{

 int a = 10;

 while(a < 20)

 {

 cout << "value of a: " << a << endl;

 a++;

 }

 System("pause");

 return 0;

}

Class Exercise:

3. Write a C++ program to find factorial of a positive integer entered by user. (Factorial of

n = 1*2*3...*n)

4.Write a program that will execute a while loop number of times that is entered by user.

29

Lab Session 13:C++ Loops Types

There may be a situation, when you need to execute a block of code several number of times. In general

statements are executed sequentially: The first statement in a function is executed first, followed by the

second, and so on. Programming languages provide various control structures that allow for more

complicated execution paths. A loop statement allows us to execute a statement or group of statements

multiple times.

C++ for loop

A for loop is a repetition control structure that allows you to efficiently write a loop that needs to execute

a specific number of times.

Syntax:

The syntax of a for loop in C++ is:

for (init; condition; increment)

{

 statement(s);

}

Here is the flow of control in a for loop:

 The init step is executed first, and only once. This step allows you to declare and initialize any

loop control variables. You are not required to put a statement here, as long as a semicolon

appears.

 Next, the condition is evaluated. If it is true, the body of the loop is executed. If it is false, the

body of the loop does not execute and flow of control jumps to the next statement just after the

for loop.

 After the body of the for loop executes, the flow of control jumps back up to

the increment statement. This statement allows you to update any loop control variables. This

statement can be left blank, as long as a semicolon appears after the condition.

 The condition is now evaluated again. If it is true, the loop executes and the process repeats itself

(body of loop, then increment step, and then again condition). After the condition becomes false,

the for loop terminates.

30

Flow Diagram:

Example:

#include <iostream>

using namespace std;

int main ()

{

 // for loop execution

 for(int a = 10; a < 20; a++)

 {

 cout << "value of a: " << a << endl;

 }

 return 0;

}

31

C++ do...while loop

Unlike for and while loops, which test the loop condition at the top of the loop, the do...while loop

checks its condition at the bottom of the loop. A do...while loop is similar to a while loop, except that a

do...while loop is guaranteed to execute at least one time.

Syntax:

The syntax of a do...while loop in C++ is:

do

{

 statement(s);

}while(condition);

Notice that the conditional expression appears at the end of the loop, so the statement(s) in the loop

execute once before the condition is tested. If the condition is true, the flow of control jumps back up to

do, and the statement(s) in the loop execute again. This process repeats until the given condition becomes

false.

Flow Diagram:

32

Example:

#include <iostream>

using namespace std;

int main ()

{

 int a = 10;

 do

 {

 cout << "value of a: " << a << endl;

 a = a + 1;

 }

while(a < 20);

 System("pause");

 return 0;

}

CLASS EXERCISE:

1.Write a C++ program to add numbers entered by user until user enters 0.

2. Write a program that initialize the loop control variable with negative integer value and outputs

the next ten values that are less than the loop control variable values.

3.Write a program that will print the table of user entered number using for loop..

4.Write a program that will display the user entered string and terminated the program when the

string entered by the is equal to goodbye using do while loop ...

5.Write a program that count down from 10 to zero and the counter aborted when the value of

counter become 3 display the message using for loop

10 ,9 ,8 ,7 ,6 ,5 ,4 ,3 counter aborted....

33

Lab Session: 14 Array In C++

C++ provides a data structure, the array, which stores a fixed-size sequential collection of elements of the same type.

An array is used to store a collection of data, but it is often more useful to think of an array as a collection of variables of

the same type.Instead of declaring individual variables, such as number0, number1, ..., and number99, you declare one

array variable such as numbers and use numbers[0], numbers[1], and ..., numbers[99] to represent individual

variables. A specific element in an array is accessed by an index.All arrays consist of contiguous memory locations. The

lowest address corresponds to the first element and the highest address to the last element.

Declaring Arrays:

To declare an array in C++, the programmer specifies the type of the elements and the number of

elements required by an array as follows:

typearrayName[arraySize];

This is called a single-dimension array. The arraySize must be an integer constant greater than zero

and type can be any valid C++ data type. For example, to declare a 10-element array called balance of

type double, use this statement:

double balance[10];

Initializing Arrays:

double balance[]={1000.0,2.0,3.4,17.0,50.0};

balance[4]=50.0;

The above statement assigns element number 5th in the array a value of 50.0. Array with 4th index will be

5th, i.e., last element because all arrays have 0 as the index of their first element which is also called base

index. Following is the pictorial representation of the same array we discussed above:

34

Accessing Array Elements:

An element is accessed by indexing the array name. This is done by placing the index of the element within square

brackets after the name of the array. For example:

double salary = balance[9];

The above statement will take 10th element from the array and assign the value to salary variable. Following is an

example, which will use all the above-mentioned three concepts viz. declaration, assignment and accessing arrays:

Example:1
#include <iostream>

using namespace std;

int main()

{

 double distance[] = {44.14, 720.52, 96.08, 468.78, 6.28};

 cout<< "2nd member = " <<distance[1]<< endl;

 cout<< "5th member = " <<distance[4]<< endl;

 return 0;

}

Example:2

#include<iostream>

usingnamespacestd;

#include<iomanip>

usingstd::setw;

int main ()

{

int n[10];// n is an array of 10 integers

// initialize elements of array n to 0

for(inti=0;i<10;i++)

{

n[i]=i+100;// set element at location i to i + 100

}

35

cout<<"Element"<< setw(13)<<"Value"<< endl;

// output each array element's value

for(int j =0; j <10; j++)

{

cout<< setw(7)<< j << setw(13)<< n[j]<< endl;

}

return0;

}

C++ Multi-dimensional Arrays

C++ allows multidimensional arrays. Here is the general form of a multidimensional array declaration:

typena me[size1][size2]...[sizeN];

For example, the following declaration creates a three dimensional 5 .10 . 4 integer array:

intthreedim[5][10][4];

Two-Dimensional Arrays:

The simplest form of the multidimensional array is the two-dimensional array. A two-dimensional array

is, in essence, a list of one-dimensional arrays. To declare a two-dimensional integer array of size x,y, you

would write something as follows:

typearrayName[x][y];

Where type can be any valid C++ data type and arrayName will be a valid C++ identifier.

A two-dimensional array can be think as a table, which will have x number of rows and y number of

columns. A 2-dimensional array a, which contains three rows and four columns can be shown as below:

36

Thus, every element in array a is identified by an element name of the form a[i][j], where a is the name of the array, and i and

j are the subscripts that uniquely identify each element in a.

Initializing Two-Dimensional Arrays:

Multidimensioned arrays may be initialized by specifying bracketed values for each row. Following is an

array with 3 rows and each row have 4 columns.

int a[3][4]={

{0,1,2,3},/* initializers for row indexed by 0 */

{4,5,6,7},/* initializers for row indexed by 1 */

{8,9,10,11}/* initializers for row indexed by 2 */

};

The nested braces, which indicate the intended row, are optional. The following initialization is

equivalent to previous example:

int a[3][4]={0,1,2,3,4,5,6,7,8,9,10,11};

Accessing Two-Dimensional Array Elements:

An element in 2-dimensional array is accessed by using the subscripts, i.e., row index and column index

of the array. For example:

intval= a[2][3];

The above statement will take 4th element from the 3rd row of the array. You can verify it in the above

digram.

Example:

#include<iostream>

usingnamespacestd;

int main ()

{

37

int a[5][2]={{0,0},{1,2},{2,4},{3,6},{4,8}};

for(inti=0;i<5;i++)

for(int j =0; j <2; j++)

{

cout<<"a["<<i<<"]["<< j <<"]: ";

cout<< a[i][j]<< endl;

}

return0;

}

When the above code is compiled and executed, it produces the following result:

a[0][0]:0

a[0][1]:0

a[1][0]:1

a[1][1]:2

a[2][0]:2

a[2][1]:4

a[3][0]:3

a[3][1]:6

a[4][0]:4

a[4][1]:8

Class Exercise:

1. Write a program that will initialize an array of 10 elements and accessed value of each elements.

2. Write a program that the two arrays fills the elements of the arrays by user and sum these

array .

3. Write a program that sums the all elements of the array.

4.Write a program that will initialize the 2-D array of [3][3] and accessed each element of 2-D

array.

